Discover the Best MCP Servers for AI Agents

Find awesome MCP Servers. Build smarter AI agents.

No AI Tools found.

Frequently Asked Questions about MCP Server

What is MCP (Model Context Protocol)?

MCP, or Model Context Protocol, is an open-source standard developed by Anthropic that allows AI models like Claude to securely interact with external data, tools, and APIs. It uses a client-server architecture to enable AI assistants to access real-time information and functionality without hardcoding custom integrations. By acting as a bridge between language models and external systems, MCP provides a flexible and scalable way to extend the capabilities of AI through secure, structured context.

What is MCP Server?

An MCP Server is a self-hosted or cloud-based system that supplies context, tools, and external data to AI models through the Model Context Protocol. It allows AI assistants to securely access real-time information from sources like documents, files, databases, and third-party APIs. By acting as a controlled gateway between the AI and external systems, an MCP Server enhances the model’s capabilities without compromising data privacy or requiring direct API key sharing.

How do MCP Server work?

MCP Servers operate using a simple and secure client-server architecture that allows AI models to interact with external tools and data. They expose files, APIs, functions, or other resources through a standardized protocol, enabling seamless communication with AI clients like Claude. Each connection is isolated and secure, typically in a 1:1 session, ensuring that the AI can access only what the host application allows—without exposing sensitive data or credentials.

Is an MCP Server secure for handling APIs and private data?

Yes, MCP Servers are built with strong security principles, making them safe for handling sensitive data and APIs. The MCP protocol ensures that your server retains full control over its own resources and does not need to expose API keys or internal logic to external LLM providers. Authentication and access control are managed directly by the MCP server, maintaining strict data boundaries and minimizing the risk of leakage or unauthorized access. This makes MCP Servers a secure solution for integrating AI with internal tools, private APIs, or enterprise systems.

How to build an MCP Server?

To build an MCP Server, developers create a local or cloud-based service that follows the Model Context Protocol specification. This server defines tools, data sources, or APIs it wants to expose to an AI assistant—such as Claude—using a simple JSON schema over HTTP. The server handles incoming requests, processes them securely, and returns structured responses that the AI can understand. MCP Servers can be written in any language (e.g., Python, Node.js, Go), and are often deployed using Docker for ease of integration. Full documentation is available on the official MCP GitHub to guide you through setup, tool definitions, and security best practices.